金屬礦山酸性廢水形成機理及治理現(xiàn)狀分析

簡介: 含硫金屬礦山在開采過程中,由于空氣、水、微生物的作用,生成酸性廢水。這些酸性廢水不但pH低、酸度大,而且含有大量的有毒、有害重金屬,F(xiàn)在普遍采用的是石灰中和法治理,相比其它處理工藝——離子交換、吸附法、生物法、電化學(xué)處理技術(shù),石灰中和法工藝簡單、可靠、處理成本低,而且由于石灰中和法長時間的應(yīng)用,其處理技術(shù)逐漸的成熟、完善。本文對金屬礦山酸性廢水形成機理和治理技術(shù)進行了討論、分析,對普遍采用的石灰中和法的各處理工藝進行了著重比較、分析。
關(guān)鍵字:礦山酸性廢水 形成機理 石灰中和法 處理技術(shù)
Analysis of cause of acid drainage and treatment in Metal Mines
Abstract:Acid mine drainage is a natural consequence of mining activity where the excavation of mineral deposits, exposes sulphur containing compounds to oxygen and water. Oxidation reactions take place (often biologically mediated) which affect the sulphur compounds that often accompany mineral seams. Finally, acid mine drainage which metals within accompanying minerals are often incorporated into generates. The discharge of wastewater which comprises acidic, metal-containing mixture into the environment surrounding abandoned mines is likely to cause serious environmental pollution which may be lead to off-site effect. All over the world there has been a long-term programme involving governments, academic and industrial partners which have investigated a range of acid mine drainage treatments. There is still no real consensus on what is the ideal solution. The problem with treatment is that there is no recognized, environmentally and friendly way. The standard treatment has been to treat with lime. There are many technologies, such as Ion Exchange and Other Adsorption Treatments、Biology-Based Treatments、Electrochemical Treatment Technologies, proposed for treatment of metal mine drainage, which are usually expensive and always more complex than liming. Lime treatment is simple and robust, and the benefits and drawbacks of the treatment well known due to long usage. This paper will discuss the mechanism of acid drainage formation in metal mines and the methods with an emphasis on lime treatment which have so far been proposed for its treatment
Key words:AMD;mechanism of formation;Lime treatment;Treatment technologies
金屬礦山礦體酸性廢水的產(chǎn)生主要是開采金屬礦體礦石中含有硫化礦,硫化礦在自然界中分布廣、數(shù)量多,它可以出現(xiàn)于幾乎所有的地質(zhì)礦體中,尤其是銅、鉛、鋅等金屬礦床[1],這些硫化礦物在空氣、水和微生物作用下,發(fā)生溶浸、氧化、水解等一系列物理化學(xué)反應(yīng),形成含大量重金屬離子的黃棕色酸性廢水,這些酸性水pH一般為2~4,成份復(fù)雜含有多種重金屬, 每升水中離子含量從幾十到幾百毫克;同時廢水產(chǎn)生量大,一些礦山每天酸水排放量為幾千甚至幾萬m3,且水量、水質(zhì)受開采情況,及不同季節(jié)雨水豐沛情況不同而變化波動較大,這些酸性重金屬廢水的存在對礦區(qū)周圍生態(tài)環(huán)境構(gòu)成了嚴(yán)重的破壞。針對礦山酸性廢水特點的處理技術(shù)的研究已有很大發(fā)展,但各處理工藝各有特點
一、形成機理分析
金屬礦山酸性廢水的形成機理比較復(fù)雜,含硫化物的廢石、尾礦在空氣、水及微生物的作用下,發(fā)生風(fēng)化、溶浸、氧化和水解等系列的物理化學(xué)及生化等反應(yīng),逐步形成含硫酸的酸性廢水。其具體的形成機理由于廢石的礦物類型、礦物結(jié)構(gòu)構(gòu)造、堆存方式、環(huán)境條件等影響因素較多,使形成過程變的十分復(fù)雜,很難定量研究說明[1]。一些研究資料[2]表明,黃鐵礦(FeS2)是通過如下反應(yīng)過程被氧化的:
FeS2 + 2O2 → FeS2(O2)2 (1)
FeS2(O2)2 → FeSO4 + S0 (2)
2S0 + 3O2 + 2H2O → 2H2SO4 (3)
上式表明元素硫是黃鐵礦氧化過程中的中間產(chǎn)物。而另有研究則認(rèn)為其氧化反應(yīng)過程是通過下式進行的,即:
。1)在干燥環(huán)境下,硫化物與空氣中的氧氣起反應(yīng)生成硫酸亞鐵鹽和二氧化硫,在此過程中氧化硫鐵桿菌及其它氧化菌起到了催化作用,加快了氧化反應(yīng)速度:
FeS2 + 3O2 → FeSO4 + SO2 (4)
在潮濕的環(huán)境中,硫化物與空氣中的氧氣、空氣土壤中的水分共同作用成硫酸亞鐵鹽和硫酸。
2FeS2 + 7O2 + 2H2O → 2FeSO4 + 2H2SO4 (5)
反應(yīng)(4)、(5)為初始反應(yīng),反應(yīng)速度很慢。
據(jù)中科院1993年的調(diào)研資料[3]證明礦物中的硫元素在初始氧化過程以四價態(tài)為主,反應(yīng)過程(5)可以表示為:
2FeS2 + 5O2 + 2H2O → 2FeSO3 + 2H2SO3
2FeSO3 + O2 → 2FeSO4
2H2SO3 + O2 → 2H2SO4
(2) 硫酸亞鐵鹽在酸性條件下,在空氣及廢水中含氧的氧化作用下,生成硫
酸鐵,在此過程中氧化鐵鐵桿菌及其它氧化菌起到了催化作用,大大加快了氧化反應(yīng)過程:
4FeSO4 + 2H2SO4 + O2 → 2Fe2(SO4)3 + 2H2O (6)
反應(yīng)(6)是決定整個氧化過程反應(yīng)速率的關(guān)鍵步驟。
(3) 硫酸鐵鹽同時還可以與FeS2及其它金屬硫化礦物發(fā)生氧化反應(yīng)過程,形成重金屬硫酸鹽和硫酸,促進了礦物中其它重金屬的溶解及酸性廢水的形成。
7Fe2(SO4)3 + FeS2 + 8H2O →15FeSO4 + 8H2SO4 (7)
2Fe2(SO4)3 + MS + 2H2O + 3O2 → 2MSO4 + 4FeSO4 + 2H2SO4 (8)
(其中M表示各種重金屬離子)
反應(yīng)(7)、(8)反應(yīng)速度最快,但是取決于反應(yīng)(6),也即亞鐵離子的氧化反應(yīng)速率。
。4) 硫酸亞鐵鹽中的Fe3+,同時會發(fā)生水解作用(具體水解程度與廢水的pH大小有關(guān)),一部分會形成較難沉降的氫氧化鐵膠體,一部分形成Fe(OH)3沉淀,其反應(yīng)方程式如下:
Fe2(SO4)3 + 6H2O → 2Fe(OH)3(膠體)+ 3H2SO4 (9)
Fe2(SO4)3 + 6H2O → 2Fe(OH)3↓+ 3H2SO4 (10)
[1] | [2] | [3] | ![]() |
下一篇文章: 沒有了
|
|
|
|