飛機發動機原理渦輪噴氣發動機和渦輪風扇發動機
http://www.dcyhziu.cn 2007/6/5 源自:中華職工學習網 【字體:
】

渦輪噴氣發動機的誕生 二戰以前,活塞發動機與螺旋槳的組合已經取得了極大的成就,使得人類獲得了挑戰天空的能力。但到了三十年代末,航空技術的發展使得這一組合達到了極限。螺旋槳在飛行速度達到800千米/小時的時候,槳尖部分實際上已接近了音速,跨音速流場使得螺旋槳的效率急劇下降,推力不增反減。螺旋槳的迎風面積大,阻力也大,極大阻礙了飛行速度的提高。同時隨著飛行高度提高,大氣稀薄,活塞式發動機的功率也會減小。 這促生了全新的噴氣發動機推進體系。噴氣發動機吸入大量的空氣,燃燒后高速噴出,對發動機產生反作用力,推動飛機向前飛行。 早在1913年,法國工程師雷恩·洛蘭就提出了沖壓噴氣發動機的設計,并獲得專利。但當時沒有相應的助推手段和相應材料,噴氣推進只是一個空想。1930年,英國人弗蘭克·惠特爾獲得了 燃氣渦輪發動機專利,這是第一個具有實用性的噴氣發動機設計。11年后他設計的發動機首次飛行,從而成為了渦輪噴氣發動機的鼻祖。 渦輪噴氣發動機的原理 渦輪噴氣發動機簡稱渦噴發動機,通常由進氣道、壓氣機、燃燒室、渦輪和尾噴管組成。部分軍用發動機的渦輪和尾噴管間還有加力燃燒室。 渦噴發動機屬于熱機,做功原則同樣為:高壓下輸入能量,低壓下釋放能量。 工作時,發動機首先從進氣道吸入空氣。這一過程并不是簡單的開個進氣道即可,由于飛行速度是變化的,而壓氣機對進氣速度有嚴格要求,因而進氣道必需可以將進氣速度控制在合適的范圍。 壓氣機顧名思義,用于提高吸入的空氣的的壓力。壓氣機主要為扇葉形式,葉片轉動對氣流做功,使氣流的壓力、溫度升高。 隨后高壓氣流進入燃燒室。燃燒室的燃油噴嘴射出油料,與空氣混合后點火,產生高溫高壓燃氣,向后排出。 高溫高壓燃氣向后流過高溫渦輪,部分內能在渦輪中膨脹轉化為機械能,驅動渦輪旋轉。由于高溫渦輪同壓氣機裝在同一條軸上,因此也驅動壓氣機旋轉,從而反復的壓縮吸入的空氣。 從高溫渦輪中流出的高溫高壓燃氣,在尾噴管中繼續膨脹,以高速從尾部噴口向后排出。這一速度比氣流進入發動機的速度大得多,從而產生了對發動機的反作用推力,驅使飛機向前飛行。 渦輪噴氣發動機的優缺點 這類發動機具有加速快、設計簡便等優點,是較早實用化的噴氣發動機類型。但如果要讓渦噴發動機提高推力,則必須增加燃氣在渦輪前的溫度和增壓比,這將會使排氣速度增加而損失更多動能,于是產生了提高推力和降低油耗的矛盾。因此渦噴發動機油耗大,對于商業民航機來說是個致命弱點。
飛機發動機原理——渦輪風扇發動機
渦輪風扇發動機的誕生 二戰后,隨著時間推移、技術更新,渦輪噴氣發動機顯得不足以滿足新型飛機的動力需求。尤其是二戰后快速發展的亞音速民航飛機和大型運輸機,飛行速度要求達到高亞音速即可,耗油量要小,因此發動機效率要很高。渦輪噴氣發動機的效率已經無法滿足這種需求,使得上述機種的航程縮短。因此一段時期內出現了較多的使用渦輪螺旋槳發動機的大型飛機。 實際上早在30年代起,帶有外涵道的噴氣發動機已經出現了一些粗糙的早期設計。40和50年代,早期渦扇發動機開始了試驗。但由于對風扇葉片設計制造的要求非常高。因此直到60年代,人們才得以制造出符合渦扇發動機要求的風扇葉片,從而揭開了渦扇發動機實用化的階段。 50年代,美國的NACA(即NASA 美國航空航天管理局的前身)對渦扇發動機進行了非常重要的科研工作。55到56年研究成果轉由通用電氣公司(GE)繼續深入發展。GE在1957年成功推出了CJ805-23型渦扇發動機,立即打破了超音速噴氣發動機的大量紀錄。但最早的實用化的渦扇發動機則是普拉特·惠特尼(Pratt & Whitney)公司的JT3D渦扇發動機。實際上普·惠公司啟動渦扇研制項目要比GE晚,他們是在探聽到GE在研制CJ805的機密后,匆忙加緊工作,搶先推出了了實用的JT3D。 1960年,羅爾斯·羅伊斯公司的“康威”(Conway)渦扇發動機開始被波音707大型遠程噴氣客機采用,成為第一種被民航客機使用的渦扇發動機。60年代洛克西德“三星”客機和波音747“珍寶”客機采用了羅·羅公司的RB211-22B大型渦扇發動機,標志著渦扇發動機的全面成熟。此后渦輪噴氣發動機迅速的被西方民用航空工業拋棄。 不加力式渦扇發動機實際上較為容易辨認,其外部有一直徑很大的風扇外殼 渦輪風扇發動機的原理 渦槳發動機的推力有限,同時影響飛機提高飛行速度。因此必需提高噴氣發動機的效率。發動機的效率包括熱效率和推進效率兩個部分。提高燃氣在渦輪前的溫度和壓氣機的增壓比,就可以提高熱效率。因為高溫、高密度的氣體包含的能量要大。但是,在飛行速度不變的條件下,提高渦輪前溫度,自然會使排氣速度加大。而流速快的氣體在排出時動能損失大。因此,片面的加大熱功率,即加大渦輪前溫度,會導致推進效率的下降。要全面提高發動機效率,必需解決熱效率和推進效率這一對矛盾。 渦輪風扇發動機的妙處,就在于既提高渦輪前溫度,又不增加排氣速度。渦扇發動機的結構,實際上就是渦輪噴氣發動機的前方再增加了幾級渦輪,這些渦輪帶動一定數量的風扇。風扇吸入的氣流一部分如普通噴氣發動機一樣,送進壓氣機(術語稱“內涵道”),另一部分則直接從渦噴發動機殼外圍向外排出(“外涵道”)。因此,渦扇發動機的燃氣能量被分派到了風扇和燃燒室分別產生的兩種排氣氣流上。這時,為提高熱效率而提高渦輪前溫度,可以通過適當的渦輪結構和增大風扇直徑,使更多的燃氣能量經風扇傳遞到外涵道,從而避免大幅增加排氣速度。這樣,熱效率和推進效率取得了平衡,發動機的效率得到極大提高。效率高就意味著油耗低,飛機航程變得更遠。 加力式渦扇發動機 不加力式渦扇發動機渦輪風扇發動機的優缺點 如前所述,渦扇發動機效率高,油耗低,飛機的航程就遠。 但渦扇發動機技術復雜,尤其是如何將風扇吸入的氣流正確的分配給外涵道和內涵道,是極大的技術難題。因此只有少數國家能研制出渦輪風扇發動機,中國至今未有批量實用化的國產渦扇發動機。渦扇發動機價格相對高昂,不適于要求價格低廉的航空器使用。
飛機發動機原理——渦輪風扇發動機
渦輪風扇發動機的誕生 二戰后,隨著時間推移、技術更新,渦輪噴氣發動機顯得不足以滿足新型飛機的動力需求。尤其是二戰后快速發展的亞音速民航飛機和大型運輸機,飛行速度要求達到高亞音速即可,耗油量要小,因此發動機效率要很高。渦輪噴氣發動機的效率已經無法滿足這種需求,使得上述機種的航程縮短。因此一段時期內出現了較多的使用渦輪螺旋槳發動機的大型飛機。 實際上早在30年代起,帶有外涵道的噴氣發動機已經出現了一些粗糙的早期設計。40和50年代,早期渦扇發動機開始了試驗。但由于對風扇葉片設計制造的要求非常高。因此直到60年代,人們才得以制造出符合渦扇發動機要求的風扇葉片,從而揭開了渦扇發動機實用化的階段。 50年代,美國的NACA(即NASA 美國航空航天管理局的前身)對渦扇發動機進行了非常重要的科研工作。55到56年研究成果轉由通用電氣公司(GE)繼續深入發展。GE在1957年成功推出了CJ805-23型渦扇發動機,立即打破了超音速噴氣發動機的大量紀錄。但最早的實用化的渦扇發動機則是普拉特·惠特尼(Pratt & Whitney)公司的JT3D渦扇發動機。實際上普·惠公司啟動渦扇研制項目要比GE晚,他們是在探聽到GE在研制CJ805的機密后,匆忙加緊工作,搶先推出了了實用的JT3D。 1960年,羅爾斯·羅伊斯公司的“康威”(Conway)渦扇發動機開始被波音707大型遠程噴氣客機采用,成為第一種被民航客機使用的渦扇發動機。60年代洛克西德“三星”客機和波音747“珍寶”客機采用了羅·羅公司的RB211-22B大型渦扇發動機,標志著渦扇發動機的全面成熟。此后渦輪噴氣發動機迅速的被西方民用航空工業拋棄。 不加力式渦扇發動機實際上較為容易辨認,其外部有一直徑很大的風扇外殼 渦輪風扇發動機的原理 渦槳發動機的推力有限,同時影響飛機提高飛行速度。因此必需提高噴氣發動機的效率。發動機的效率包括熱效率和推進效率兩個部分。提高燃氣在渦輪前的溫度和壓氣機的增壓比,就可以提高熱效率。因為高溫、高密度的氣體包含的能量要大。但是,在飛行速度不變的條件下,提高渦輪前溫度,自然會使排氣速度加大。而流速快的氣體在排出時動能損失大。因此,片面的加大熱功率,即加大渦輪前溫度,會導致推進效率的下降。要全面提高發動機效率,必需解決熱效率和推進效率這一對矛盾。 渦輪風扇發動機的妙處,就在于既提高渦輪前溫度,又不增加排氣速度。渦扇發動機的結構,實際上就是渦輪噴氣發動機的前方再增加了幾級渦輪,這些渦輪帶動一定數量的風扇。風扇吸入的氣流一部分如普通噴氣發動機一樣,送進壓氣機(術語稱“內涵道”),另一部分則直接從渦噴發動機殼外圍向外排出(“外涵道”)。因此,渦扇發動機的燃氣能量被分派到了風扇和燃燒室分別產生的兩種排氣氣流上。這時,為提高熱效率而提高渦輪前溫度,可以通過適當的渦輪結構和增大風扇直徑,使更多的燃氣能量經風扇傳遞到外涵道,從而避免大幅增加排氣速度。這樣,熱效率和推進效率取得了平衡,發動機的效率得到極大提高。效率高就意味著油耗低,飛機航程變得更遠。 加力式渦扇發動機 不加力式渦扇發動機渦輪風扇發動機的優缺點 如前所述,渦扇發動機效率高,油耗低,飛機的航程就遠。 但渦扇發動機技術復雜,尤其是如何將風扇吸入的氣流正確的分配給外涵道和內涵道,是極大的技術難題。因此只有少數國家能研制出渦輪風扇發動機,中國至今未有批量實用化的國產渦扇發動機。渦扇發動機價格相對高昂,不適于要求價格低廉的航空器使用。
|
|
|
|